Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 4306, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383731

RESUMEN

Rare or novel missense variants in large genes such as TTN and NEB are frequent in the general population, which hampers the interpretation of putative disease-causing biallelic variants in patients with sporadic neuromuscular disorders. Often, when the first initial genetic analysis is performed, the reconstructed haplotype, i.e. phasing information of the variants is missing. Segregation analysis increases the diagnostic turnaround time and is not always possible if samples from family members are lacking. To overcome this difficulty, we investigated how well the linked-read technology succeeded to phase variants in these large genes, and whether it improved the identification of structural variants. Linked-read sequencing data of nemaline myopathy, distal myopathy, and proximal myopathy patients were analyzed for phasing, single nucleotide variants, and structural variants. Variant phasing was successful in the large muscle genes studied. The longest continuous phase blocks were gained using high-quality DNA samples with long DNA fragments. Homozygosity increased the number of phase blocks, especially in exome sequencing samples lacking intronic variation. In our cohort, linked-read sequencing added more information about the structural variation but did not lead to a molecular genetic diagnosis. The linked-read technology can support the clinical diagnosis of neuromuscular and other genetic disorders.


Asunto(s)
Enfermedades Musculares , Miopatías Nemalínicas , Enfermedades Neuromusculares , Humanos , Haplotipos/genética , Enfermedades Neuromusculares/diagnóstico , Enfermedades Neuromusculares/genética , ADN , Secuenciación de Nucleótidos de Alto Rendimiento
2.
Neuromuscul Disord ; 35: 29-32, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219297

RESUMEN

Patients with myopathies caused by pathogenic variants in tropomyosin genes TPM2 and TPM3 usually have muscle hypotonia and weakness, their muscle biopsies often showing fibre size disproportion and nemaline bodies. Here, we describe a series of patients with hypercontractile molecular phenotypes, high muscle tone, and mostly non-specific myopathic biopsy findings without nemaline bodies. Three of the patients had trismus, whilst in one patient, the distal joints of her fingers flexed on extension of the wrists. In one biopsy from a patient with a rare TPM3 pathogenic variant, cores and minicores were observed, an unusual finding in TPM3-caused myopathy. The variants alter conserved contact sites between tropomyosin and actin.


Asunto(s)
Enfermedades Musculares , Miopatías Nemalínicas , Humanos , Femenino , Músculo Esquelético/patología , Tropomiosina/genética , Enfermedades Musculares/patología , Hipertonía Muscular/patología , Fenotipo , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Mutación
3.
Neuromuscul Disord ; 34: 32-40, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38142473

RESUMEN

We describe three patients with asymmetric congenital myopathy without definite nemaline bodies and one patient with severe nemaline myopathy. In all four patients, the phenotype had been caused by pathogenic missense variants in ACTA1 leading to the same amino acid change, p.(Gly247Arg). The three patients with milder myopathy were mosaic for their variants. In contrast, in the severely affected patient, the missense variant was present in a de novo, constitutional form. The grade of mosaicism in the three mosaic patients ranged between 20 % and 40 %. We speculate that the milder clinical and histological manifestations of the same ACTA1 variant in the patients with mosaicism reflect the lower abundance of mutant actin in their muscle tissue. Similarly, the asymmetry of body growth and muscle weakness may be a consequence of the affected cells being unevenly distributed. The partial improvement in muscle strength with age in patients with mosaicism might be due to an increased proportion over time of nuclei carrying and expressing two normal alleles.


Asunto(s)
Enfermedades Musculares , Miopatías Nemalínicas , Humanos , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Músculo Esquelético/patología , Actinas/genética , Mutación , Enfermedades Musculares/genética , Aminoácidos/genética , Aminoácidos/metabolismo
4.
J Neuromuscul Dis ; 10(5): 977-984, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37393515

RESUMEN

BACKGROUND: Pathogenic variants in the TPM3 gene, encoding slow skeletal muscle α-tropomyosin account for less than 5% of nemaline myopathy cases. Dominantly inherited or de novo missense variants in TPM3 are more common than recessive loss-of-function variants. The recessive variants reported to date seem to affect either the 5' or the 3' end of the skeletal muscle-specific TPM3 transcript. OBJECTIVES: The aim of the study was to identify the disease-causing gene and variants in a Finnish patient with an unusual form of nemaline myopathy. METHODS: The genetic analyses included Sanger sequencing, whole-exome sequencing, targeted array-CGH, and linked-read whole genome sequencing. RNA sequencing was done on total RNA extracted from cultured myoblasts and myotubes of the patient and controls. TPM3 protein expression was assessed by Western blot analysis. The diagnostic muscle biopsy was analyzed by routine histopathological methods. RESULTS: The patient had poor head control and failure to thrive, but no hypomimia, and his upper limbs were clearly weaker than his lower limbs, features which in combination with the histopathology suggested TPM3-caused nemaline myopathy. Muscle histopathology showed increased fiber size variation and numerous nemaline bodies predominantly in small type 1 fibers. The patient was found to be compound heterozygous for two splice-site variants in intron 1a of TPM3: NM_152263.4:c.117+2_5delTAGG, deleting the donor splice site of intron 1a, and NM_152263.4:c.117 + 164 C>T, which activates an acceptor splice site preceding a non-coding exon in intron 1a. RNA sequencing revealed inclusion of intron 1a and the non-coding exon in the transcripts, resulting in early premature stop codons. Western blot using patient myoblasts revealed markedly reduced levels of the TPM3 protein. CONCLUSIONS: Novel biallelic splice-site variants were shown to markedly reduce TPM3 protein expression. The effects of the variants on splicing were readily revealed by RNA sequencing, demonstrating the power of the method.


Asunto(s)
Miopatías Nemalínicas , Humanos , Miopatías Nemalínicas/genética , Secuenciación del Exoma , Tropomiosina/genética , Tropomiosina/metabolismo , Músculo Esquelético/patología , Análisis de Secuencia de ARN
5.
Genes (Basel) ; 13(5)2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35627290

RESUMEN

Intragenic segmental duplication regions are potential hotspots for recurrent copy number variation and possible pathogenic aberrations. Two large sarcomeric genes, nebulin and titin, both contain such segmental duplication regions. Using our custom Comparative Genomic Hybridisation array, we have previously shown that a gain or loss of more than one copy of the repeated block of the nebulin triplicate region constitutes a recessive pathogenic mutation. Using targeted array-CGH, similar copy number variants can be detected in the segmental duplication region of titin. Due to the limitations of the array-CGH methodology and the repetitiveness of the region, the exact copy numbers of the blocks could not be determined. Therefore, we developed complementary custom Droplet Digital PCR assays for the titin segmental duplication region to confirm true variation. Our combined methods show that the titin segmental duplication region is subject to recurrent copy number variation. Gains and losses were detected in samples from healthy individuals as well as in samples from patients with different muscle disorders. The copy number variation observed in our cohort is likely benign, but pathogenic copy number variants in the segmental duplication region of titin cannot be excluded. Further investigations are needed, however, this region should no longer be neglected in genetic analyses.


Asunto(s)
Variaciones en el Número de Copia de ADN , Duplicaciones Segmentarias en el Genoma , Conectina/genética , Variaciones en el Número de Copia de ADN/genética , Genómica , Humanos , Proteínas Musculares , Reacción en Cadena de la Polimerasa , Duplicaciones Segmentarias en el Genoma/genética
6.
PLoS One ; 17(5): e0267793, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35576196

RESUMEN

The human genome contains repetitive regions, such as segmental duplications, known to be prone to copy number variation. Segmental duplications are highly identical and homologous sequences, posing a specific challenge for most mutation detection methods. The giant nebulin gene is expressed in skeletal muscle. It harbors a large segmental duplication region composed of eight exons repeated three times, the so-called triplicate region. Mutations in nebulin are known to cause nemaline myopathy and other congenital myopathies. Using our custom targeted Comparative Genomic Hybridization arrays, we have previously shown that copy number variations in the nebulin triplicate region are pathogenic when the copy number of the segmental duplication block deviates two or more copies from the normal number, which is three per allele. To complement our Comparative Genomic Hybridization arrays, we have established a custom Droplet Digital PCR method for the detection of copy number variations within the nebulin triplicate region. The custom Droplet Digital PCR assays allow sensitive, rapid, high-throughput, and cost-effective detection of copy number variations within this region and is ready for implementation a screening method for disease-causing copy number variations of the nebulin triplicate region. We suggest that Droplet Digital PCR may also be used in the study and diagnostics of other segmental duplication regions of the genome.


Asunto(s)
Variaciones en el Número de Copia de ADN , Miopatías Nemalínicas , Reacción en Cadena de la Polimerasa , Hibridación Genómica Comparativa , Genoma Humano , Humanos , Proteínas Musculares/genética , Miopatías Nemalínicas/genética , Reacción en Cadena de la Polimerasa/métodos
7.
Neuromuscul Disord ; 31(6): 539-545, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33933294

RESUMEN

We report the first mosaic mutation, a deletion of exons 11-107, identified in the nebulin gene in a Finnish patient presenting with a predominantly distal congenital myopathy and asymmetric muscle weakness. The female patient is ambulant and currently 26 years old. Muscle biopsies showed myopathic features with type 1 fibre predominance, strikingly hypotrophic type 2 fibres and central nuclei, but no nemaline bodies. The deletion was detected in a copy number variation analysis based on next-generation sequencing data. The parents of the patient did not carry the deletion. Mosaicism was detected using a custom, targeted comparative genomic hybridisation array. Expression of the truncated allele, less than half the size of full-length nebulin, was confirmed by Western blotting. The clinical and histological picture resembled that of a family with a slightly smaller deletion, and that in patients with recessively inherited distal forms of nebulin-caused myopathy. Asymmetry, however, was a novel feature.


Asunto(s)
Miopatías Distales/genética , Mosaicismo , Proteínas Musculares/genética , Debilidad Muscular/etiología , Miotonía Congénita/genética , Adulto , Biopsia , Exones/genética , Músculos Faciales/patología , Femenino , Finlandia , Heterocigoto , Humanos , Mutación , Linaje , Eliminación de Secuencia
8.
J Gen Physiol ; 153(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33533889
9.
Neuromuscul Disord ; 31(3): 239-245, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33376055

RESUMEN

Nemaline myopathies are a clinically and genetically heterogeneous group of congenital myopathies, mainly characterized by muscle weakness, hypotonia and respiratory insufficiency. Here, we report a male foetus of consanguineous parents with a severe congenital syndrome characterized by arthrogryposis detected at 13 weeks of gestation. We describe severe complex dysmorphic facial and musculoskeletal features by post mortem fetal examination confirming the prenatal diagnosis. Histomorphological and ultrastructural studies of skeletal muscle reveal mini-rods in myotubes caused by a novel homozygous splice-site mutation in NEB (NM_001164508, chr2:g.152,417,623C>A GRCh37.p11 | c.19,102-1G>T ENST00000397345.3). No rods were seen in the myocardium. We discuss the relevance of this mutation in the context of nemaline myopathies associated with early developmental musculoskeletal disorders.


Asunto(s)
Artrogriposis/genética , Feto/anomalías , Proteínas Musculares/genética , Mutación/genética , Miopatías Nemalínicas/genética , Femenino , Edad Gestacional , Humanos , Líbano , Masculino , Debilidad Muscular/genética , Músculo Esquelético/anomalías , Embarazo , Ultrasonografía Prenatal
10.
Acta Neuropathol Commun ; 8(1): 18, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066503

RESUMEN

Nemaline myopathy (NM) caused by mutations in the gene encoding nebulin (NEB) accounts for at least 50% of all NM cases worldwide, representing a significant disease burden. Most NEB-NM patients have autosomal recessive disease due to a compound heterozygous genotype. Of the few murine models developed for NEB-NM, most are Neb knockout models rather than harbouring Neb mutations. Additionally, some models have a very severe phenotype that limits their application for evaluating disease progression and potential therapies. No existing murine models possess compound heterozygous Neb mutations that reflect the genotype and resulting phenotype present in most patients. We aimed to develop a murine model that more closely matched the underlying genetics of NEB-NM, which could assist elucidation of the pathogenetic mechanisms underlying the disease. Here, we have characterised a mouse strain with compound heterozygous Neb mutations; one missense (p.Tyr2303His), affecting a conserved actin-binding site and one nonsense mutation (p.Tyr935*), introducing a premature stop codon early in the protein. Our studies reveal that this compound heterozygous model, NebY2303H, Y935X, has striking skeletal muscle pathology including nemaline bodies. In vitro whole muscle and single myofibre physiology studies also demonstrate functional perturbations. However, no reduction in lifespan was noted. Therefore, NebY2303H,Y935X mice recapitulate human NEB-NM and are a much needed addition to the NEB-NM mouse model collection. The moderate phenotype also makes this an appropriate model for studying NEB-NM pathogenesis, and could potentially be suitable for testing therapeutic applications.


Asunto(s)
Codón sin Sentido , Proteínas Musculares/genética , Mutación Missense , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/ultraestructura
11.
Semin Pediatr Neurol ; 29: 12-22, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31060721

RESUMEN

The congenital myopathies form a large clinically and genetically heterogeneous group of disorders. Currently mutations in at least 27 different genes have been reported to cause a congenital myopathy, but the number is expected to increase due to the accelerated use of next-generation sequencing methods. There is substantial overlap between the causative genes and the clinical and histopathologic features of the congenital myopathies. The mode of inheritance can be autosomal recessive, autosomal dominant or X-linked. Both dominant and recessive mutations in the same gene can cause a similar disease phenotype, and the same clinical phenotype can also be caused by mutations in different genes. Clear genotype-phenotype correlations are few and far between.


Asunto(s)
Genotipo , Mutación , Miopatías Estructurales Congénitas/genética , Actinas/genética , Humanos , Proteínas Musculares/genética , Fenotipo
12.
Neuromuscul Disord ; 29(2): 97-107, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30679003

RESUMEN

We report the first family with a dominantly inherited mutation of the nebulin gene (NEB). This ∼100 kb in-frame deletion encompasses NEB exons 14-89, causing distal nemaline/cap myopathy in a three-generation family. It is the largest deletion characterized in NEB hitherto. The mutated allele was shown to be expressed at the mRNA level and furthermore, for the first time, a deletion was shown to cause the production of a smaller mutant nebulin protein. Thus, we suggest that this novel mutant nebulin protein has a dominant-negative effect, explaining the first documented dominant inheritance of nebulin-caused myopathy. The index patient, a young man, was more severely affected than his mother and grandmother. His first symptom was foot drop at the age of three, followed by distal muscle atrophy, slight hypomimia, high-arched palate, and weakness of the neck and elbow flexors, hands, tibialis anterior and toe extensors. Muscle biopsies showed myopathic features with type 1 fibre predominance in the index patient and nemaline bodies and cap-like structures in biopsies from his mother and grandmother. The muscle biopsy findings constitute a further example of nemaline bodies and cap-like structures being part of the same spectrum of pathological changes.


Asunto(s)
Proteínas Musculares/genética , Músculo Esquelético/diagnóstico por imagen , Miopatías Nemalínicas/genética , Adulto , Humanos , Masculino , Músculo Esquelético/patología , Miopatías Nemalínicas/diagnóstico , Miopatías Nemalínicas/patología , Linaje , Eliminación de Secuencia , Tomografía Computarizada por Rayos X
13.
Muscle Nerve ; 59(1): 116-121, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30265400

RESUMEN

INTRODUCTION: Nebulin is a giant actin-binding protein in the thin filament of the skeletal muscle sarcomere. Studies of nebulin interactions are limited by the size, complexity, and poor solubility of the protein. We divided the nebulin super-repeat region into a super-repeat panel, and studied nebulin/actin interactions. METHODS: Actin binding was studied using a co-sedimentation assay with filamentous actin and 26 different nebulin super-repeats. RESULTS: The panel revealed notable differences in actin binding between the super-repeats. Both ends of the super-repeat region bound actin significantly more strongly, whereas the central part of the protein bound actin weakly. Thus, the binding between nebulin and actin formed a location-dependent pattern of strong vs. weak binding. DISCUSSION: The nebulin super-repeat panel allowed us to study the actin binding of each super-repeat individually. The panel will be a powerful tool in elucidating nebulin function in health and disease. Muscle Nerve 59:116-121, 2019.


Asunto(s)
Actinas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Sarcómeros/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Proteínas Musculares/química , Músculo Esquelético/ultraestructura , Unión Proteica/fisiología , ARN Mensajero , Secuencias Repetitivas de Ácidos Nucleicos , Regiones Terminadoras Genéticas/genética , Regiones Terminadoras Genéticas/fisiología
14.
Sci Rep ; 8(1): 15728, 2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30356055

RESUMEN

Nebulin is a very large protein required for assembly of the contractile machinery in muscle. Mutations in the nebulin gene NEB are a common cause of nemaline myopathy. Nebulin mRNA is alternatively-spliced so that each mRNA contains either exon 143 or exon 144. We have produced monoclonal antibodies specific for the regions of nebulin encoded by these two exons, enabling analysis of expression of isoforms at the protein level for the first time. All antibodies recognized a protein of the expected size (600-900 kD) and stained cross-striations of sarcomeres in muscle sections. Expression of exon 143 is developmentally-regulated since newly-formed myotubes in cell culture expressed nebulin with exon 144 only; this was confirmed at the mRNA level by qPCR. In fetal muscle, nebulin with exon 143 was expressed in some myotubes by 12-weeks of gestation and strongly-expressed in most myotubes by 17-weeks. In mature human muscle, the exon 144 antibody stained all fibres, but the exon 143 antibody staining varied from very strong in some fibres to almost-undetectable in other fibres. The results show that nebulin containing exon 144 is the default isoform early in myogenesis, while regulated expression of nebulin containing exon 143 occurs at later stages of muscle development.


Asunto(s)
Exones , Proteínas Musculares/química , Isoformas de Proteínas/genética , Empalme Alternativo , Anticuerpos Monoclonales , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Humanos , Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/análisis , Proteínas Musculares/metabolismo , Isoformas de Proteínas/análisis , Isoformas de Proteínas/metabolismo
15.
J Neuromuscul Dis ; 5(3): 307-314, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30040739

RESUMEN

BACKGROUND: Our previous array, the Comparative Genomic Hybridisation design (CGH-array) for nemaline myopathy (NM), named the NM-CGH array, revealed pathogenic copy number variation (CNV) in the genes for nebulin (NEB) and tropomyosin 3 (TPM3), as well as recurrent CNVs in the segmental duplication (SD), i.e. triplicate, region of NEB (TRI, exons 82-89, 90-97, 98-105). In the light of this knowledge, we have designed and validated an extended CGH array, which includes a selection of 187 genes known to cause neuromuscular disorders (NMDs). OBJECTIVE: Our aim was to develop a reliable method for CNV detection in genes related to neuromuscular disorders for routine mutation detection and analysis, as a much-needed complement to sequencing methods. METHODS: We have developed a novel custom-made 4×180 k CGH array for the diagnostics of NMDs. It includes the same tiled ultra-high density coverage of the 12 known or putative NM genes as our 8×60 k NM-CGH-array but also comprises a selection of 175 additional genes associated with NMDs, including titin (TTN), at a high to very high coverage. The genes were divided into three coverage groups according to known and potential pathogenicity in neuromuscular disorders. RESULTS: The array detected known and putative CNVs in all three gene coverage groups, including the repetitive regions of NEB and TTN. CONCLUSIONS: The targeted neuromuscular disorder 4×180 k array-CGH (NMD-CGH-array v1.0) design allows CNV detection for a broader spectrum of neuromuscular disorders at a high resolution.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Enfermedades Neuromusculares/diagnóstico , Enfermedades Neuromusculares/genética , Adulto , Conectina/genética , ADN/genética , Femenino , Genómica/métodos , Humanos , Masculino , Análisis por Micromatrices , Proteínas Musculares/genética , Mutación/genética , Miopatías Nemalínicas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Reproducibilidad de los Resultados
16.
Neuromuscul Disord ; 28(4): 323-326, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29433794

RESUMEN

We present here a Finnish nemaline myopathy family with a dominant mutation in the skeletal muscle α-actin gene, p.(Glu85Lys), segregating in three generations. The index patient, a 5-year-old boy, had the typical form of nemaline myopathy with congenital muscle weakness and motor milestones delayed but reached, while his mother never had sought medical attention for her very mild muscle weakness, and his maternal grandmother had been misdiagnosed as having myotonic dystrophy. This illustrates the clinical variability in nemaline myopathy.


Asunto(s)
Actinas/genética , Músculo Esquelético/metabolismo , Mutación/genética , Miopatías Nemalínicas/genética , Fenotipo , Preescolar , Humanos , Masculino , Miopatías Nemalínicas/diagnóstico
17.
Neurol Genet ; 3(6): e204, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30238059

RESUMEN

OBJECTIVE: Copy number variants (CNVs) were analyzed from next-generation sequencing data, with the aim of improving diagnostic yield in skeletal muscle disorder cases. METHODS: Four publicly available bioinformatic analytic tools were used to analyze CNVs from sequencing data from patients with muscle diseases. The patients were previously analyzed with a targeted gene panel for single nucleotide variants and small insertions and deletions, without achieving final diagnosis. Variants detected by multiple CNV analysis tools were verified with either array comparative genomic hybridization or PCR. The clinical significance of the verified CNVs was interpreted, considering previously identified variants, segregation studies, and clinical information of the patient cases. RESULTS: Combining analysis of all different mutation types enabled integration of results and identified the final cause of the disease in 9 myopathy cases. Complex effects like compound heterozygosity of different mutation types and compound disease arising from variants of different genes were unraveled. We identified the first large intragenic deletion of the titin (TTN) gene implicated in the pathogenesis of a severe form of myopathy. Our work also revealed a "double-trouble" effect in a patient carrying a single heterozygous insertion/deletion mutation in the TTN gene and a Becker muscular dystrophy causing deletion in the dystrophin gene. CONCLUSIONS: Causative CNVs were identified proving that analysis of CNVs is essential for increasing the diagnostic yield in muscle diseases. Complex severe muscular dystrophy phenotypes can be the result of different mutation types but also of the compound effect of 2 different genetic diseases.

18.
Ann Neurol ; 79(6): 959-69, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27074222

RESUMEN

OBJECTIVE: Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. METHODS: We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. RESULTS: Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force-sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin-thick filament overlap. INTERPRETATION: These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. Ann Neurol 2016;79:959-969.


Asunto(s)
Citoesqueleto/genética , Proteínas Musculares/genética , Enfermedades Musculares/genética , Enfermedades Musculares/fisiopatología , Sarcómeros/genética , Actinas/genética , Animales , Estudios de Casos y Controles , Citoesqueleto/fisiología , Humanos , Ratones Noqueados , Contracción Muscular/genética , Contracción Muscular/fisiología , Proteínas Musculares/metabolismo , Proteínas Musculares/fisiología , Músculo Esquelético/metabolismo , Mutación , Sarcómeros/fisiología
19.
Eur J Hum Genet ; 24(4): 574-80, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26197980

RESUMEN

Recently, new large variants have been identified in the nebulin gene (NEB) causing nemaline myopathy (NM). NM constitutes a heterogeneous group of disorders among the congenital myopathies, and disease-causing variants in NEB are a main cause of the recessively inherited form of NM. NEB consists of 183 exons and it includes homologous sequences such as a 32-kb triplicate region (TRI), where eight exons are repeated three times (exons 82-89, 90-97, 98-105). In human, the normal copy number of NEB TRI is six (three copies in each allele). Recently, we described a custom NM-CGH microarray designed to detect copy number variations (CNVs) in the known NM genes. The array has now been updated to include all the currently known 10 NM genes. The NM-CGH array is superior in detecting CNVs, especially of the NEB TRI, that is not included in the exome capture kits. To date, we have studied 266 samples from 196 NM families using the NM-CGH microarray, and identified a novel recurrent NEB TRI variation in 13% (26/196) of the families and in 10% of the controls (6/60). An analysis of the breakpoints revealed adjacent repeat elements, which are known to predispose for rearrangements such as CNVs. The control CNV samples deviate only one copy from the normal six copies, whereas the NM samples include CNVs of up to four additional copies. Based on this study, NEB seems to tolerate deviations of one TRI copy, whereas addition of two or more copies might be pathogenic.


Asunto(s)
Variaciones en el Número de Copia de ADN , Proteínas Musculares/genética , Miopatías Nemalínicas/genética , Estudios de Casos y Controles , Puntos de Rotura del Cromosoma , Hibridación Genómica Comparativa , Humanos
20.
Am J Pathol ; 185(10): 2833-42, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26269091

RESUMEN

Despite the expression of the mutated gene in all muscles, selective muscles are involved in genetic muscular dystrophies. Different muscular dystrophies show characteristic patterns of fatty degenerative changes by muscle imaging, even to the extent that the patterns have been used for diagnostic purposes. However, the underlying molecular mechanisms explaining the selective involvement of muscles are not known. To test the hypothesis that different muscles may express variable amounts of different isoforms of muscle genes, we applied a custom-designed exon microarray containing probes for 57 muscle-specific genes to assay the transcriptional profiles in sets of human adult lower limb skeletal muscles. Quantitative real-time PCR and whole transcriptome sequencing were used to further analyze the results. Our results demonstrate significant variations in isoform and gene expression levels in anatomically different muscles. Comparison of the known patterns of selective involvement of certain muscles in two autosomal dominant titinopathies and one autosomal dominant myosinopathy, with the isoform and gene expression results, shows a correlation between the specific muscles involved and significant differences in the level of expression of the affected gene and exons in these same muscles compared with some other selected muscles. Our results suggest that differential expression levels of muscle genes and isoforms are one determinant in the selectivity of muscle involvement in muscular dystrophies.


Asunto(s)
Expresión Génica/genética , Distrofias Musculares/genética , Distrofias Musculares/patología , Anciano , Anciano de 80 o más Años , Exones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...